ABSTRACT

Recent advances in image segmentation, grid generation, flow solvers, realistic boundary conditions, fluid-structure interaction, data reduction and visualization are reviewed with special emphasis on patient-specific flow prediction. At the same time, present shortcomings in each one of these areas are identified. Several examples are given that show that this methodology is maturing rapidly, and may soon find widespread use in medicine.

KEY WORDS: Hemodynamics, Pulmonary Flows, CFD, Bioengineering

INTRODUCTION

Approximately 80% of the human body mass consists of water. The vascular system (arteries and veins) delivers nutrients and retrieves waste products. The respiratory system delivers oxygen and retrieves carbon dioxide. These vital transport systems are mainly tubular in nature, and are powered by the heart and lung respectively. Any kind of damage or obstruction of these transport systems will, in all likelihood, result in a variety of diseases than can have a profound effect on wellness and quality of life. Vessel damage or obstruction may be treated by a variety of surgical and interventional procedures: stenting, balloon angioplasty, in situ drug delivery for unclotting, bypass surgery, artificial organ implantation, etc. Many of these procedures are performed daily on thousands of patients, and have led to an impressive empirical knowledge database. Some of these procedures have statistically significant failure rates, indicating a need to study in depth the fluid dynamics before and after the intervention. As in the manufacturing industries, it would be highly desirable to predict the outcome of an intervention before ‘cutting tissue’, particularly for complex cases where a detailed empirical database is lacking.
The basic steps required for any type of flow simulation are the following:
- Pre-Processing or Problem Definition:
 - Geometry (Surface);
 - Boundary and Initial Conditions;
- Grid Generation;
- Fluid-Structure Solver; and
- Visualization and Data Reduction.

Any type of interventional simulation will require accurate modeling of patient-specific anatomy and physiologic conditions. It is here where the biggest obstacle to routine simulations lies. Typically, only the anatomy is imaged. Flows may be measured non-invasively by PCMRA or ultrasound (US). However, the accuracy for these measurements can be problematic due to imaging artifacts and noise. The compliance of an arterial wall is difficult to obtain, and its pressure/dilatation may be highly nonlinear. Nevertheless, recent advances in:
- Radiology (high contrast imaging);
- Image-to-surface definition tools;
- Automatic grid generation;
- Fast incompressible flow solvers and realistic boundary conditions;
- Fluid-structure interaction techniques;
- Insightful visualization;
- Validation in the form of in vitro/vivo studies; and
- Increased compute and graphics power
have led to a favourable confluence of techniques that have made predictions on the living human being possible, and in some cases, routinely so.

In the sequel, we focus on recent advances, outstanding issues and obstacles for each one of these areas. Thereafter, we show several examples to demonstrate that what was a vision several years ago is maturing rapidly and may indeed lead to medical tools in the near future.

IMAGE-TO-SURFACE DEFINITION TOOLS

The starting point for most non-invasive patient-specific simulations is an image, i.e. an array of pixels with different colours. Imaging modalities currently in use are: Digital Subtraction Angiography (DSA), Magnetic Resonance Angiography (MRA), Computed Tomography (CT), and Xenon-CT (XeCT). The overall quality (sharpness) of medical images depends not only on hardware factors (resolution, wavelength, etc.), but also on type of contrast agent used, the skill of the radiologist and patient-specific factors. This implies that in many cases, medical images will exhibit coarse resolution and noise, i.e. require considerable experience and/or ‘guessing’ to be interpreted correctly. In order to conduct any kind of flow simulation for the same or all of the vessels present in the imaged region, the surface of these vessels needs to be extracted. Numerous techniques have been explored over the last decade, of which we list a few here:
Active Contours: This most common approach consists in 2D image segmentation based on edge detection, followed by slice interpolation, stacking and meshing [Bar96, Qua98, Tay98, Moo99]. Although there are many contour and edge detection operators, there is still no algorithm that can automatically extract region boundaries perfectly from medical images [Kle96]. Besides, this technique requires a large amount of manual input, and does not work properly for situations where the vessel is not perpendicular to the image slices (e.g. complex bifurcations and aneurysms).

Deformable Models: In this case, an initial, given shape is iteratively deformed by solving an equivalent elastic problem driven by the image intensity gradient [Bur94, Vem96, Jon97]. The major drawback is that the initial shape (or skeleton) must have the same topology as the reconstructed boundary. For simple vessels and bifurcations this is perhaps the best technique available. However, patient-specific simulations with complex geometries are difficult, and in many instances this technique requires substantial human intervention, making the whole process tedious and time consuming.

Skeletonization and Deformable Models: These techniques assume that the surfaces to be extracted are of tubular nature, i.e. have a skeleton of centerlines [Lee94, Kaw95]. In a first step, these centerlines are extracted from the image. In a second step, the thickness of the vessels is obtained by ‘inflating’ the centerlines in order to match the vessel boundaries. In some cases, each individual vessel is obtained separately, so that the complete vessel tree is obtained in a third step that joins the separate branches. The end result is a triangulation that defines the vessel geometry. The amount of manual ‘guidance’ varies from technique to technique, but can be considerable for some. This type of technique works very well for tubular structures, i.e. for most of the vascular system. However, it will not work well for regions where centerlines are not well defined, such as highly stenosed vessels or aneurysms.

Region Growing with Isosurface Extraction: These techniques interpret the pixels of the image as a mesh, i.e. with an underlying point and element structure. Given the local distribution of pixel intensity, an iso-surface of constant value can be obtained. The regions covered by the vessels of interest are obtained using region growing algorithms [Mas96, Wil97, Yim99, Dal99, Ceb99, Ceb00]. Starting from one or more so-called seedpoints, all the voxels falling into the region of interest (typically given by an intensity threshold) are queried for a given intensity value. The iso-surface obtained in this way is given as a triangulation.

None of the techniques outlined above is, at this point, universally applicable. In particular, images that exhibit vessels in close proximity can lead to wrong vessel interpretation. The automatic reconstruction of arterial trees involving several arterial generations also constitutes an unsolved problem. Perhaps a combination of different techniques for different entities (e.g. vessels, aneurysms, etc.) will lead to new breakthroughs.

The triangulation extracted from the medical image at hand, no matter which technique is being used, must be post-processed further. We mention:
a) **Surface Improvement:** Depending on the vessel surface extraction technique used the triangulations obtained can contain:
 - Elements that have extremely large or small angles;
 - Small elements surrounded by much larger elements; and
 - Elements with large normal jumps between neighbours.
These elements are removed using edge or element collapse, as well as diagonal swapping [Hop93, Fre97, Ceb99, Ceb00].

b) **Surface Smoothing:** Depending on the vessel surface extraction technique used and the image resolution, the triangulations obtained will exhibit bumps, sharp corners or other anomalies that are not present in the actual vessel. This implies that a surface smoothing step is required. A number of surface smoothing techniques have appeared in the literature. We have used the non-shrinking smoothing of Taubin [Tau95].

c) **Branch Cutting:** Vessels tend to become smaller and smaller as one progresses along the arterial tree. At some point, geometry resolution or flux resolution is insufficient, and a boundary condition has to be applied to limit the computational domain. This implies that a branch cutting tool has to be devised. Many techniques are possible. We have used iso-distance contours to cut branches interactively [Ceb99, Ceb00],

d) **Construction of Post-Operational Models:** Given the pre-operational anatomy, and the expected modification (e.g. due to stenting or bypass surgery), the post-operational model can be constructed. This will involve surface merging, cutting, blending, etc. We have used iso-surface based techniques to perform such operations in an expedient way [Ceb01].

AUTOMATIC GRID GENERATION

Any field solver requires some form of volume discretization. Given their high degree of flexibility and automation, unstructured grids based on tetrahedra have been almost universally adopted for patient-specific vessel simulations. Recent advances in:
 - Discrete surface gridding and
 - Minimal input grid generation
have enabled fully automatic grid generation of highly complex arterial and bronchial geometries [Ceb00]. We mention a few of these advances in the sequel, as well as outstanding issues for further investigation.

a) **Discrete Surface Gridding:** The vessel geometry is not defined as an analytical surface patch, but as a triangulation. This implies that robust automatic surface triangulation techniques that operate on discrete surface patches have to be devised. For a number of years, we have used an advancing front technique on these discrete surface patches [Löh96]. Recent improvements include: automatic preprocessing/improvement of the given discrete surface patch grid, the definition and enforcement of so-called sharp edges, a strict enforcement of continuous topology, and improved front-crossing checks [Löh00, Löh01].
b) **Minimal Input Grid Generation**: The definition of proper element size and shape for arterial or bronchial trees with several branching generations can be a tedious, time-consuming process. In order to alleviate this problem, we have used adaptive background grids based on the local discrete surface patch curvature [Löh00, Löh01]. This leads to grids where the number of elements per vessel diameter is always sufficient, without generating too many elements in the larger vessels.

As an outstanding research topic we mention the automatic generation of optimal grids for tubular structures. The idea here is to generate stretched elements along the main direction of a vessel. This technique could potentially reduce the number of elements and CPU time requirements by a factor of 1:5.

FAST INCOMPRESSIBLE FLOW SOLVERS

The equations describing incompressible flows may be written as

\[\mathbf{v},_t + \mathbf{v}\nabla \mathbf{v} + \nabla p = \nabla \mu \nabla \mathbf{v} , \]

(1)

\[\nabla \cdot \mathbf{v} = 0 . \]

(2)

Here \(p \) denotes the pressure, \(\mathbf{v} \) the velocity vector and both the pressure \(p \) and the viscosity \(\mu \) have been normalized by the (constant) density \(\rho \). Blood is a non-Newtonian fluid, implying that the viscosity \(\mu \) depends on the strain rate tensor. The last two decades have seen impressive progress in our ability to solve these equations in an expedient manner. Key elements of any modern incompressible flow solver include:

- An Arbitrary Lagrangean-Eulerian (ALE) formulation for moving walls (deforming grids);
- Implicit timestepping;
- Some form of upwinding with limiters for the advection operator;
- Satisfaction of the LBB condition for the divergence constraint, either via mixed elements [Tay73, For79], artificial dissipation [Fra89, Fra92, Tez90] or consistent numerical fluxes [Löh99];
- Preconditioned iterative solvers [Wig85, Saa86, Ven88, Saa89] for all large systems of equations that require inversion;
- Edge-based data structures for reduced indirect addressing and optimal operation count [Luo94, Löh01]; and
- Minimal cache misses, vectorization and parallelization options [Löh98].

Further algorithmic gains may come from the use of LU-SGS preconditioning [Luo98, Luo01] and multigrid [Mav95, Mav96]. We have not seen the use of these techniques for medical flow applications, but see no reason why the success they have had in other fields can not be duplicated here as well.
Boundary Conditions

The imposition of proper flow boundary conditions represents one of the most difficult, and admittedly questionable, aspects of patient-specific simulations. In the first place, the flux data is not easy to obtain. Measuring velocity profiles via Phase-Contrast MRA (PCMRA) requires non-standard imaging protocols and a longer scanning time. Then there is the question of resolution. The number of pixels required for accurate vessel geometry reconstruction is much lower than the number of pixels required for accurate flow profile reconstruction. Only the velocity normal to the MRA cut is measured, i.e. a complete characterization of the velocity field would require even longer scanning times. For this reason only the velocity normal to a cut is measured, i.e. all cross-velocity information is lost. For some vessels, peak velocities can be measured using ultrasound techniques, and these can in turn be used to impose boundary conditions. On the other hand, we know that the flow in curved tubular structures can exhibit considerable cross flow, and that any form of cross flow can have significant effects downstream.

To date, most CFD simulations have been carried out prescribing fully developed, time-dependent velocity profiles derived from flow-rate curves using the Womersley solution [Wom55]. The Womersley solution holds only for pulsating flow in an infinitely long circular cylinder. For other vessel cross-sections the Womersley profiles are mapped accordingly.

Pressure boundary conditions are important for fluid-structure interactions simulations with compliant walls. Pressures can be obtained invasively using catheters, but it would be highly desirable to develop non-invasive pressure measuring techniques.

Major outstanding problems in this field are:

a) The derivation of post-operative boundary conditions from pre-operative data [Tay01, Ceb01]; and

b) The derivation of boundary conditions when complete information is unavailable. A typical case is the circle of Willis. We do not expect to be able to obtain complete flow and pressure data for this complex arterial system for years to come. Examples of work in this area include vascular bed models [Ceb00] and the link of detailed 3-D models with 1-D models of the whole cardiovascular system [Qua98].
STRUCTURAL DEFORMATION MODELS

Arterial wall movement will have a profound effect on local flow conditions. One observes that fluxes do not ‘add up’ if the deformation of the wall is neglected. In principle, the vessel wall and the surrounding medium can be modeled using a structural dynamics solver for 3-D nonlinear, large-deformation behaviour. However, the difficulties in obtaining proper initial and boundary conditions are even more pronounced here than for the flow solver. The material is highly nonlinear, orthotropic, layered, may be responding, etc. How to obtain this information non-invasively is, at this point, an open question. For this reason, most wall deformations have been computed using shells [Per95, Zha00] or, even simpler, an independent ring model [Qua98]. In this case, the normal wall displacement η is obtained from:

$$m \eta_{tt} + d \eta_t + k \eta = p , \quad m = \rho_w h , \quad k = \frac{E h}{(1 - \nu^2)r^2} ,$$

where ρ_w, h, r, E, ν denote, respectively, the wall density, thickness, vessel radius, Young’s modulus and Poisson ratio. This equation is integrated using a second-order implicit time integration scheme. As stated before, measuring h, r, E, ν is no simple matter [Zha00, Lad01].

FLUID-STRUCTURE INTERACTION TECHNIQUES

Given that vessel deformation plays an important role for local flux evaluations, the fluid and structure models must be combined. Due to their generality, modularity and extendability so-called loose coupling techniques have been used extensively in engineering (see, e.g. [Bau96]). The key idea is to have a master code that invokes the fluid and structural codes alternatively in such a way that a minimum of changes are required for the latter. All data transfer is handled by a separate library. We remark that this is not only a matter of fast interpolation techniques [Löh95, Mam95], but also of accuracy, load conservation [Ceb97], geometrical fidelity [Ceb97], and temporal synchronization [Les96, Ceb97]. For implicit CFD and CSD codes, we use the following underrelaxed predictor-corrector scheme for each timestep:
while: not converged:
 update structure with fluid loads:
 \[x_i^s = (1 - \alpha)x_i^{s-1} + \alpha f(\sigma_i^f) \]
 update fluid with structure position/velocity:
 \[\sigma_i^f = (1 - \alpha)\sigma_i^{f-1} + \alpha g(x_i^s) \]
endwhile

Typical underrelaxation factors are in the range $0.5 \leq \alpha \leq 0.9$. Current research in this area is focused on convergence criteria and acceleration techniques.

INSIGHTFUL VISUALIZATION

In order to enhance the understanding and prediction capability of patient-specific simulations, the results obtained must be presented in a form easily accessible to the medical community. In the particular case of tubular structures, many classic visualization techniques fail to offer insight. This is because iso-surfaces or plane cut, staples in the engineering world, become meaningless. A plane cut through a twisted, winding arterial or bronchial tree will lead to a few scattered ellipsoids here and there that offer no insight on fluxes, pressures, etc. For this reason, we have developed specialized reduction techniques [Ceb01] that work with the skeleton of the tubular structure in order to display:

- Plane cuts normal to the skeleton;
- Plane cuts along the skeleton;
- Fluxes along the skeleton;
- Iso-distance to wall surfaces; etc.

These reduction techniques have proven extremely beneficial in identifying important flow features such as local recirculation zones and flow rates. Other techniques that have found widespread use in computational hemodynamics include particle tracing (where there is an immediate mental connection to blood cells) and the use of transport equations to observe the dispersion of tracers.

VALIDATION

In order to validate at least partially the methodology developed to date, a phantom glass model of a carotid bifurcation with 65% stenosis in the internal carotid artery was measured and computed. The model, as well as the cuts used for MRA flow measurements are shown in Figure 1a. The CFD model was generated from the MRA data. The discrepancy in the radii obtained from image processing and segmentation was less than 2%. Parabolic velocity profiles based on measured fluxes were prescribed at the entrance and exit of the external carotid. Figure 1b shows a comparison of the absolute value of the velocities (CFD) and the normal velocity measured (MRA) for the cuts labeled A-A, B-B in Figure 1a. One can clearly see how coarse the resolution of the MRA is. Figure 1c shows the absolute value of the velocity in the centerplane and the streamlines. Note the large recirculation zone present.
Figure 1a Phantom: MIP Geometry Definition and MRA Cuts

Figure 1b Phantom: Comparison of Velocities (CFD-MRA)
Figure 1c Phantom: Abs(Vel) in Plane and Streamlines

Figure 2a Circle of Willis: Zhemo User Interface
EXAMPLES

E.1 Circle of Willis: The aim of this simulation was to assess the effect of clipping an artery in the circle of Willis on the overall flow pattern. Figure 2a shows the graphical interface used for image processing, segmentation, surface extraction and surface improvement. One can clearly discern the maximum intensity projection (MIP) on the upper left side, as well as two other cuts and the main 3-D window with the extracted and cut surface. The surface mesh is shown in Figure 2b. The volume mesh had approximately 4 million tetrahedra. Figure 2c shows streamribbons for an unclipped (left) and clipped (right) artery.

![Figure 2b Circle of Willis: Surface Mesh](image1)

![Figure 2c Circle of Willis: Streamribbons for Open and Clipped Cases](image2)

E.2 Carotid Bifurcation: This case shows the need to couple fluid and structural codes to predict arterial flows. The anatomical data was taken from a normal human subject. A model of the right carotid artery of the subject was reconstructed from contrast-
enhanced MRA images. Figure 3a shows the maximum intensity projection (MIP) of the anatomical images. Four 2D phase-contrast MRA images were taken at different locations, two along the common carotid artery (CCA) below bifurcation, and two above the bifurcation. Figure 3b shows the sum of the flow to the internal (ICA) and external (ECA) carotid arteries, which is markedly different from the flow at the CCA (labeled as rigid wall). Instantaneous flows between the two consecutive PC slices along the CCA are also different. These changes in the flow waveforms are due to the compliance of the arterial walls, and cannot be neglected in the finite element modeling. It must be noted that although instantaneous flows do not add up to zero, the total flows over a cardiac cycle do. The two flow measurements along the CCA were used to derive the pressure waveform using a lumped parameter model. A fluid-structure interaction simulation was then carried out imposing Womersley velocity profiles at the exits from the ICA and ECA and traction-free boundary conditions at the entrance of the CCA with the reconstructed pressure waveform. The computed flow rate at the entrance of the CCA is also shown in Figure 3b. Although this compliant model does not perfectly reproduce the measured flow at that location, it certainly represents a much better approximation than a rigid model.

![Figure 3a,b Carotid Bifurcation: MIP and Comparison of Fluxes](image)

E.3 Thorax

This last case is concerned with the air flow in the bronchii and lungs. The segmented image, together with the cuts at the extremities of the smaller branches, is shown in Figure 4a. The mesh sizes were automatically obtained from an adaptive background grid with 6 levels of refinement. This produced the surface mesh shown in Figure 4b. One can discern the smaller elements in regions of higher curvature and smaller vessel diameter. The volume mesh had approximately 1 million elements. In this first study, only the steady airflow was considered. The results obtained can be
seen in Figures 4c,d, which show surface pressures and iso-surfaces of constant absolute value of velocity.

Figure 4a,b Thorax: Segmented Image and Surface Mesh

Figure 4c,d Thorax: Surface Pressures and Iso-Surfaces of Abs(Velocity)
CONCLUSIONS AND OUTLOOK

The ability to predict accurately flows in the vascular and pulmonary system on a patient-specific basis has increased dramatically in the last years. We expect progress to continue in all the areas that encompass a comprehensive simulation capability: image segmentation, grid generation, flow solvers, fluid-structure interaction, data reduction and visualization. Some of the outstanding questions involve boundary conditions, material parameters (in particular for wall compliance), and the clinical significance of particular flow phenomena.

At present, image-based, patient-specific computational hemodynamics can be used to
- Study vascular diseases;
- Enhance diagnosis; and
- Plan surgical procedures.

Imaging modalities will continue to evolve and eventually both anatomy and physiology will be accurately visualized. However, the power of computer simulations lies in their ability to predict the outcome of procedures, i.e. the answer to ‘what if’ questions that can be useful for optimizing therapies.

Looking into the more distance future, we foresee:
- CFD enhanced radiology;
- Simulations of long-terms effects, such as plaque formation;
- Simulations of drug delivery and effects; and
- The coupling of flow codes (continuum level) and particle codes (molecular level).

REFERENCES

[Saa86] Y. Saad and M.H. Schultz - GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems; Siam J. Sci. Stat. Comp. 7, 3, 856-869
(1986).
Comp. 10, 6, 1200-1232 (1989).
[Tau95] G. Taubin - A Signal Processing Approach to Fair Surface Design; Computer
[Tay73] C. Taylor and P. Hood - A Numerical Solution of the Navier-Stokes Equations
[Tez90] T.E. Tezduyar, R. Shih, S. Mittal and S.E. Ray - Incompressible Flow Computa-
tions With Stabilized Bilinear and Linear Equal-Order Interpolation Velocity-Pressure
[Yim00] P.J. Yim, R. Mullick, R.M. Summers, H. Marcos, J.R. Cebral, R. Lölner and
P.L. Choyke - Measurement of Stenosis from Magnetic Resonance Angiography Using
Fitting Multiresolution Hybrid Shape Models to Brain MRI; Lecture Notes in Computer
[Ven88] V. Venkatakrishnan - Newton Solution of Inviscid and Viscous Problems;
[Wig85] L.B. Wigton, N.J. Yu and D.P. Young - GMRES Acceleration of Computational
[Wil97] D.L. Wilson and J.A. Noble - Segmentation of Cerebral Vessels and Aneurysms
from MR Angiographic Data; Lecture Notes in Computer Science, V.1230, 423-428
(1997).
[Wom55] J.R. Womersley - Method for the Calculation of Velocity, Rate of Flow and
Viscous Drag in Arteries When the Pressure Gradient is Known; J. Physiol. 127, 553-563
(1955).
[Yim99] O. Yim and R.M. Summers - Analytic Surface Reconstruction by Local Threshold
Estimation in the Case of Simple Intensity Contrasts; Proc. SPIE Medical Imaging,
Long - Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a